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1. 

When investigating the stability of the trivial solution of an autonomous system 
of ordinary differential equations in the critical case of s pairs of pure imagi- 
nary roots an essential role can be played by the presence of integral linear de- 
pendences between the system’s frequencies or, in other words, by the internal 
resonance. Various special cases of this problem were examined in [I, - 63. Cur 
aims are: to obtain a special (normal) form of the differential equation system 
with internal resonance of most general form in it ; to ascertain the conditions 
under which the presence of internal resonance does not permit the application 
stability investigation methods developed for resonance-free systems ; to solve 
the stability problem in one of the most important cases of odd-order internal 
resonance, generalizing the preceding investigations. IJI the solution of the last 
problem the necessary and sufficient conditions are given for the stability of the 
model simplifies system. Using Chetaev’s theorem we show that as a rule the 
instability of the original system follows from the instability of the model sys- 
tem. Cases of structurally-unstable instability ( *) for which the model system 
does not resolve the problem of stability are outlined. The results obtained are 
extended, in particular, to Hamiltonian systems. 

Reduction to norm1 form, We consider the system of autonomy dif- 
ferential equations x** = Ax, 4 X, (4 (1.1) 

2* = (xl*,* l l , x&*), x, = (x1*, . . . ( x&q, x, (0) = 0 

where X* and X* are &-dimensional vectors in the Euclidean space E,, X,* (are) 
are holomorphic functions of a?*, A is a constant square matrix with pure imaginary 

eigenvalues & and - h, (h: ( 0, s = 1. 2,. . . , n), all of which are simple. 
Definitron. System (1.1) possesses a k th-order internal resonance if relations of 

form 
<PA> = 0, A = (&, . . . , &J (1.2) 

P = (PI,. l * , py& IP)=p,+...+p,=k>3,P~En 

are ~l~l~ed between the eigenvalues. Here h is the eigenvalue vector of matrix A 
and the ps > 0 are relatively prime integers, 

We restrkt consideration to the case when a unique pair of resonance vectors P and 
A exists, i. e. complex resonance is absent (**) . Let us constrnct a nonlinear transforma- 

l f Editor’s Note. In the Russian text this is called: “nonco8nt iustabiiity”. 
*‘I Certain aspects of the interaction of third-order resonances were considered in f73 ; 
the results of investigating third-order resonance without accounting for interactions, 
following from [Z-4], were also cited therein. 
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tion reducing the original system to normal form [8] up to terms of arbitrarily high order. 
To do this we first represent system (1.1) as 

z’ = hz + i xqz, y), y’ = - hy + 2 Y(‘)(z, y) (1.3) 
I=m>;L km>,2 

x = (Lizi, . . . , &lL Y = (Yl, * - * , YJ, I. = (hl * - - 9 Ll 

by means of a nonsingular linear transformation. Here z and y are complex-comugate 
vectors, A is a diagonal matrix, X(r) and Y(r) are complex-conjugate vector 

functions whose components XJ(Q and Y,CO (s = 1, 2,. . . , n) are represented by 
&h-order forms. 

We transform system (1.3) by the nonlinear substitution 

zN+l ZN-+-1 

z=u+ 2 uqU,V), y==u+ 2 Y(‘)(U,U) 
r=m 1-m 

where N is an arbitrarily large number, while CD(lh and Y(l) are complex-conjugate 

vector functions whose components CD*(l) and YysW are I th-order forms. Then 
[9, lo], in the new variables we obtain the following system of equations: 

2NSl 

u'= hu + 2 u(qu,u)+qv4 (1.4) 
l=m 

2N+l 

in which the expansions of the complex-conjugate vector functions W and V 

start with terms of not less than 2 (N + 1) th order, while Utr) and V(l) are complex- 
conjugate Zth order forms, so that 

u’,‘)(u, U) =--_ 2 RrlrSz+ . . . U> v+ . . . V>, s = 1,2, . . , n 
Ik,l+lKJ=[ 

Here only those coefficients R&l, can be nonzero for which the integral vectors 

k, = (k*l,. . * 9 km), 2.9 = (Is19 . * f 7 ZsJt ksj9 l.sj > 0 

satisfy one of the relations 

((k, - 1,) A) = as, 1 k, 1 + 1 &I = 2, s = I,?. .t n (1.5) 

Such vectors k, and Z, and the terms in system (1.4) corresponding to them are called 
resonance vectors and resonance terms, respectively. It is important to ascertain the 
structure of the resonance terms for solving the stability problem. 

As is easily seen, for odd Z relations (1.5) are fulfilled identically in AS if 

kSj = Z,i + 6,j, s, i = 1, 2, . . . n (1.6) 

where &1 is the Kronecker symbol, The terms in the Zth-order forms, corresponding to 
these resonance vectors, are called terms of identical resonance. But if A satisfies the 
internal resonance condition (1.2). then relations (1.5) are further satisfied by other va- 
lues than (1.6) of the vectors k, and I, . The terms corresponding to these vectors are 
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called terms of internal resonance. Obviously, relations (1.5) reduce to condition ( 1.2) 
in two cases 

1) 183 = ep3 + h,j - 6,j, kd = haj (1.7) 

2) ksj = epj + hsj + 6,j, 1~ = hai 

where e is any positive integer, while the h,j are all possible nonnegative integers such 
that 

Ek+2ih,j=lkI 
j=l 

(the plus sign is taken in the first case, while the minus, in the second). From (1.7) it 
follows that terms of kth-order internal resonance can appear only in forms of not less 
than( k - 1 )th order. The number e takes all positive integer values a = I,&. . . , 
Q, where e, is the maximum integer contained in the fraction (1 + 1) I k in the 

first case and in (I - 1) / k in the second. 
Thus, to within ( 2N + 1 )th-order terms the first group of complex- conjugate equa- 

tions take the form aN+l ?a 

(1.8) 

aN+l L, n 

2 2 -J-J v;pj 
I=k-lc=lj=l 

sN+l ct n 

2 
I=k+lc=lj=l zlh,l=l--l--ck 

Here the terms left out are of higher than 2 (N + 1)th order, while el and es are the 
largest integers contained in the fractions (1 + 1) / k and (1 - 1) / k , respectively. 
The first group of nonlinear terms corresponds to identical resonance and is a sum of 
odd forms starting with degree m or m $ 1 if m is even. The remaining summands 
are terms of internal resonance in the first and in the second cases (1.7). From examina- 
tion of (1.8) it follows that the terms of internal resonance do not affect the stability of 
the trivial solution (under the condition that the problem is solved by the first nonlinear 
terms)if k>m+ 1 when misoddandif k>m+ 2 when miseven. Other- 
wise, the problem must be solved with the resonance terms brought in, Here the solving 
of the problem is complicated by the fact that it cannot be reduced to the critical case 
of n zero roots, as can be done in the resonance-free case, i. e. when only terms of iden- 
tical resonance are present [S-11]. 

It is convenient to carry out further investigation in the polar coordinates rr and 8, 

u, = Jf<ey v, = JGie+, ~=i,...,n 

Separating the real and imaginary parts in (1.8), we obtain 

(1.9) 

‘AN-+-I cl n 

2 2 fl rihrPj 
I=k-1 r=lJ=i 

a,h I gl 
.= - 

rk Qh,j t&e) r”I ,:‘j + 
j=1 
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zN+1 8.1 n 

rs 2 XfJryj 2 
Z=k+f L =1 j=l alh, I=&-1--rk 

Py(t?i&~+ .*. 
j==l 

Qhsj (&) = aj,SJj cos 89 f bfij sin &I 

Phsj (se) = at) cos ee -- bt) sin e0 
dj 8j 

‘k*j = Re CQ, &‘. = 
32 

Reck) b 
sj’ 

k8j = Im ckEIj, byj = lm ct’. 
82 

ffa Zqth-ordersystem (p > n) off~m(l.~)~~s~e n f~quencyr~so~nce(l.2), 
then the normal formofthis system can also be described in form (1.8) or (1.9) with n 
replaced everywhere by q in the terms of identical resonance. The system obtained 
from (1.9) by discarding terms of order higher than 2N-f1 in rl, . . . , rp is called a 
model system. Below we solve the stability problem for system (1.9) in the simplest (and 
at the same time most important) case of odd-order internal resonance when k = m $1. 

2. Xn~~~ti~&tion of the model ryrtem. when k = m + 1 the model 
system obtained from (1.9) with 2N + 1 = k can be written as follows: 

r,’ = Z&(0) i rjpj’2, s=&...,n (2.1) 

j=l 

(0 = he1 + . . . + hen, Q. (0) = a, cos 8 + b, sin 0) 

We introduce the matrix 

c=l;::: 21 

with whose aid we set up all possible matrices 

For each matrix G,, we set up three determinants 

&s,, = 

aSi “h P H b,j ‘8, 

, sj<Sh 
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By introducing further the auxiliary angles tp8 

sin +a = -a.& ~09% = bJ&, & 

we obtain 

= )la: + bp, 0=%,2, . . . . n 

Qa (0) = Aa sin (0 - 93, DIjra = A, Aah sin &a, - Ipnj) 

943 

All the cases which can appear in the investigation of system (2.1) fall into the follow- 
ing groups. 

Case 1, a) Rank C _= 2. A matrix C,,, exists such that all its corresponding 
determmants Daj9 # 0, ivhere 

sign Da,, = sign D, = - sign D,,h (2.2) 

b) Rank C = 1. A pair of elements af, a, =j= 0 (or bj, bh # 0) exist such 
that sign atah = --1 or sign bfb, = -4). 

Case 2. a) Rank C = 2. For any matrix c,,, either among the determinants 

D 811119 D,,,, Da=.. there are zero ones or condition (2.2) is violated. 
b) Rank C = 1. The condition 

sign a& = 1 or sign bibh = 1 

is fulfilled for any nonzero pairs of elements aiah (or bf bh) 
N o t e . Cases lb and 2b contain the particularly degenerate case when all the deter- 

minants Dja = 0 (j, h = 1, 2, . . . , n; j # h). In spite of the particularity of this case 
its investigation is of great interest. In fact, it is not difficult to show that precisely such 
a degeneracy holds for every Hamiltonian system ( *) . 

The solution of the stability problem in Case 1 is given by 
Theorem 2.1. The zero solution of model system (2.1) is stable in Case 1. 
Pro o f , The validity of the theorem follows from the fact that under the conditions 

of Case 1 system (2.1) possesses the sign-definite integral 

I Ez yrrr + . . . + *I’nm + Cn+lrm + . - l + C$q = C@nfJt (2.3) 

(cj are arbitrary constants). Sndeed. by computing dI f dt by virtue of system (2. I), 
and examining the equation dl / dt E 0, we obtain the following system of equations 
for determining y8 : 

ylal + l . . + Yth = 0, ylb, + . . . + ynbn = 0 (2.4) 

We can convince ourselves that this system has a strictly positive solution when both 
conditions la as well as conditions lb are fulfilled. The existence of a positive solu- 
tion proves the theorem. 

Going on to consider Case 2, we first state a lemma (omitting the proof) which con- 
nects the properties of matrix C and the auxiliary angles ‘cp,. 

Lemma. When conditions 2a are fulfilled the angles g&an be numbered in such 
a way as to fulfill the inequalities 

O<% -*r-05, O~g,-*,c~, s=%..., n, iCh 

l ) Nurpeisov, S., On stability in the critical case of n pairs of purely imaginary 
roots in the presence of internal resonance. Alma-A& Candidate’s Dissertation, 1972. 
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Taking this numbering of angles g8 as accomplished, we number the variables r, in 
system (2.1) in the same order. The numbering order is immaterial in the degenerate 

case since here q8 = ‘$r for all a. It is easy to see that as a result of this renumbering 

the matrix C possesses the property that all the determinants D,,, > 0 for j < h. 

In particular, D,, < 0 for all s. 
Theorem 2.2. The zero solution of model system (2.1) is unstable in Case 2. 
The proof is carried out with the aid of Chetaev’s theorem [12]. Obviously, it is suf- 

ficient to consider system (2.1) without the equations ri = 0, j = n + 1, . . . , q. 
Case 2a. Consider the function 

V1 = fl rf"'coS(8 - %I) 
s=l 

Computing its derivative by virtue of (2. l), after a number of transformations we obtain 

V1' = A,' 
s=1 j=l 

whence we see that V,* > 0 in the region t, > 0. Using the equation Vi = 0 we 
can construct the region r8 > 0, 8' < 0 < 0" in which all the hypotheses or Uheta- 

ev’s instability theorem are fulfilled. 

Gase 2b. In this case Chetaev’s instability theorem is satisfied either by the func- 

tion 
v, = i &os 9 

s=1 

(when some of the a, are nonnero) or by the function 

V3 = fi r,P@ sin 8 
*=I 

(when some of the b, are nonzero). 
Theorems 2.1 and 2.2 give the necessary and sufficient stability conditions for the 

zero solution of the model system (2.1). 
In what follows, in the analysis of the complete system we need a more detailed in- 

vestigation of unstable model systems, which we do below. As we have shown, inequal- 

ities (2.5) are fulfilled for every unstable model system, Let us now separate out all the 
cases of instability into the two classes A and B 

0 < qpo - $I < n, s = 2,. . . , n (A) (2.5) 

o,<l#8-lj$<n, a=2 ,..., 1; *r+l=...=l)n=$l+n; 

2<Z<n--1 (B) 

Theorem 2. 3. Unstable model systems of class A possess a growing solution 

0 = 8,, rs = ys z (it), ys > 0, 8 = 1,2, . . . , n (2.6) 

Substituting this solution into (2.1). we have 

z’ = 2zW4 

7s = Q,IrnIi T?, 

(2.7) 

s = $2, . . ( n (2.8) 
j=l 
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n P 2 + Qa'(0) = 0, 
Cl * 

Q,’ = + (2.9) 

First of all, using conditions A we convince ourselves that Eq. (2.9), which we reduce to 
n 

by using (2.8), has a root 0 = BO such that Qs @,,) > 0 for all s. Here 8, cz (%, 
$i + n) or 8, E (rbn + n, lpr)_ Now ys > 0 are determined from (2.8) in the form 

rs = Qlo (6 Q$)x t Qro = Q, (e,), 1 
‘)G=2-_k (2.10) 

j=r 

The furmtion a (t) is found from (2.7). By the same token we have given another proof 
of the instability of the zero solution of the model system when condition A is satisfled. 

Theorem 2.4. Unstable model systems of class 3 possess the sign-constant (po- 
sitive) integral 

ISr Tlrl+ i TJ*+ i Cyj= COIiSt (2.11) 
s=l+t j=n+l 

The validity of this assertion can be checked by a direct dl~~n~~on of (2.11) on the 
strength of system (2.1). It is convenient to take as yI the following values (Cj are ar- 
bitrary constants) : 

~1 = (n - WA,, ye = i/A,, S=lfi,...,n 

N o t e , Model systems of class B do not possess solution (2.6). However, under spe- 
cific M&~OIB between $1 and rpi, j = 2, . . ., I, they can have a growing solution ana- 
logousto(2.6). For~weneed~~t~(2.6) 8,=$,or8,=~+fXt~~=sr, S= 
1, 1 + i, . . .( n, where the g, are some constants. The existence condition for the grow- 
ing solution is 1 

x P, ctg w - $p,) = 0 

n=% 

8, Investigation of the complete ryrtom, The stability of the model 
system is related with the presence of a sign-definite integral ; therefore, it is clear that 
from ic1 stability it is impossible to draw any conclusions on the stability of the complete 
system withart a consideration of the terms of higher than mth order. However, the fol- 
lowing theorem is valid for unstable model systems. 

Theorem 3.1. If a model system belongs to class A, then the instability of the 
zero solution of the model system involves the Ibiza of the zero solution of the 
complete system. 

Setting 2N + 1 = k, we write system (1.9) as 

r; =: 2Q, (0) fi rjpj” + R, 0-t e), s=f,. ..,n (3. I) 
j=l 
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r = (rl, . . . , r4), 0 = (t-I,, . . ., ChJ, R, (r, 0) - 0 (II I^ 11 (‘+l)‘*) 
s = 1, . . ‘f q; cf, (T, 6) - 0 (1 T 1 @-q 

In (3.1) we pass to the generalized q-dimensional cylindrical coordinates p and cpI, 
s== ,.. 1 L’ n - 1; rl, j = rt + 1, . . ., q,by the formulas 

S-l 

fi = ~lpco~cpl, r‘, = ~spCoScp,~ ShCpj, s=2 ,..., n---2 

j=l 
n-1 

f, = m& n sin cpj, rj = rj, i = Ii + 1, . . . , p 

j=l 

The following values of angles ‘ps: 

q& = 4)80, cos61p = (n - s + 1)-l/* sincpj: = (.n;; Ja 

correspond to the growing solution in the new coordinate system. We linearize the new 
system with respect to the variables q+ and 8 in a neighborhood of the point cp8*, 8,. 
Omitting the intermediate computations, we write the final result in the following form : 

P * = 2opk~~ + PO (r*$ a, 0) 

F. 
043 Es 2opw-1 

1 

LN8 
(n-sf I) V. e*- a, 

I 
+P*(f&,e), s=l,..., G-1 

n-l 

0,’ = opk+l 
P 

I’,& - k0, + F’, (r*, a, 0) 
851 ) 

rj-=&(r*,a,0), j==n+t ,..*, q 

Here 

~*=(P,~Ta+l,...J*), @=(81,...,%a), ~=(a*,...,&+I), a,=cp,-cp,” 
n 

8 *=0-i&, 
n-s * 

7 Qsol (0 = (f&k/a-l)-li% 

r s= 
P, )/n-J 

rs Qsi-- * 5 +, &_,=-$Q,, s4,...,,+_2 n---s 
j =a+1 

whiIe functions F, have the: following structure 

F’s (r*, ~9 6) z F’,“(r, a, 8) + p(k-1@F(,2)(r+*, a, @+J, s = 1, . . . , n 

~l)-~~~~~~-l)‘2), ~f(0,u*e*)~QQ~~,~~o+[I~) 

Fo(r,, u, 0) = 1F(b;)(r*, a, 63) + ~Q~t)(r,, u, 6), R$Q- O(~r(r~+i)‘2) 

F’oa’(O,a,$f-O((jlall,fl*), Fj(r*,ix,e4)Nu(tfT*Irkf’f’a), 
j-_=i&+1,...,Q 

Having in mind to make use of Chetaev’s thorem, we consider the functions 

v = PI JV, = US2 - p~r+~), s = 1, . . . ) n - 1 

TV, = 6,’ - p2c1+r), Wj = Fj - 0, i If IZ + 1, . . . , CJ 

(r is a parameter to be defined below). It is clear that the inequality VV’ > 0 is 
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valid for the derivative r of the function V for 0 < 1) r* I< z (z is sufficiently 
small) in some cone K1 containing the growing solution of the model system. We de- 
fine a cone K, by the inequality 

max,W, < 0, s = 1, . . .) q 

If y is sufficiently large, then, obviously, K, c K, for all P < r. 
We now evaluate the signs of the derivatives W,,’ of the functions W, on their 

corresponding sections of the surface of the cone K,, contained in K,. To this end we 
set 

al = 6#+*, 8, = 6 &+Y, rf = I 61 I P, 1 &I < II 

j = 1, . . .) n - 1; i = n + 1,. . . , q; v = 1,. . . , q; 

i#i.n#s 

If s coincides with one of the values of j, i, s, then we set, respectively 1 a ., 1 = 

pf+Y, 1 8, 1 = 6,pl+u, rs =p. Asaresultweobtain 

Wso’=~ t 
[ 

LNP?l - 
(n-s+l) vn-- 8 

-7-2 +qpr/s+q 
I 

(3.2) 

w,o’ = 2op” + i r&3, 
1 a=1 

- k - 2 (I + T)] + 0 (pl’s+q 

~jo’=--(~+~)pa+O(pl~4+o), a=27+k/2+1 

i=l,..,,n--i; j=n+i,...,q 

From (3.2) we see that for a sufficiently large v and for all admissible values of 6, 
we have 

w,,’ c 0, s=l,..., q 

when P < z, By introducing now the function W = max W,, t = 1, . . .) !?9 
we can assert that the functions V and W satisfy the corresponding Chetaev’s instabi- 
lity theorem [12]. 

T he o r e m 3.2. If a model system belongs to class B, then the instability of the 
complete system does not follow from the instability of the model system. 

In fact, suppose that system (2.1) is unstable and belongs to class B. We consider the 
positive definite function 

H = .T + rs2 + . . . + r12 (3.3) 

where I is the model system’s integral (2.11). Setting R, (r, 0) = 0, j = 1, 1 + 
1 
(d: l),‘lre 

n into system (3.1) and computing the derivative of (3.3). by virtue of system 
obtain 

H’ = TrRl+ i 7jRj + 4 i rsQ, (0) fi ry’2 (3.4) 
j=l+l a=2 j=l 

From (3.4) we see that we can always choose the functions RI, Rl+l,. . . ,R, - 
O(llr it/2+1), so as to have either H’ = 0, or H’ = G (r, @), where G (r, 6) is a 
negative definite function. Q. E. D. 

The authors thank the participants of the seminar on analytical mechanics, directed 
by V. V. Bumiantsev, for discussing this paper. 
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T~-O~~L CONTNIL SYNTXS8Is FCRA ~~-~~ NEAR SYSTEM 
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Iu. I. BERDYSHEV 
(Sverdlovsk) 

(Received January 13, 1975) 

On the basis of Pontriagin’s maximum principle we establish the structure ofthe 
optimal control and of the optimal trajectories, using the properties of the sys- 
tem being analyzed. We propose a rule for the construction of the program con- 
trol satisfying the maximum principle. In the case when the terminal state Iies 
outside some bounded region we prove that the rule mentioned determines the 
optimal control and permits us to solve the synthesis problem. 

1, Statement of the problem. Let the motion of a point in the xv-plane 
be described by the system of equations 

x’=r,7oostp, y’=usintp, v*=+Q, v’=Iysr+ (3.X) 

where Q, = cp (i!) is the angle between the z-axis and the direction of the velocity 


